Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U21(tt, M, N) → a__U22(tt, M, N)
a__U22(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
a__x(N, 0) → 0
a__x(N, s(M)) → a__U21(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2, X3)) → a__U22(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2, X3) → U22(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U21(tt, M, N) → a__U22(tt, M, N)
a__U22(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
a__x(N, 0) → 0
a__x(N, s(M)) → a__U21(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2, X3)) → a__U22(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2, X3) → U22(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
A__U22(tt, M, N) → MARK(N)
A__U22(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(s(X)) → MARK(X)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → MARK(X1)
A__U11(tt, M, N) → A__U12(tt, M, N)
A__U22(tt, M, N) → MARK(M)
A__PLUS(N, 0) → MARK(N)
A__U12(tt, M, N) → MARK(N)
MARK(U22(X1, X2, X3)) → A__U22(mark(X1), X2, X3)
A__U21(tt, M, N) → A__U22(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
A__U22(tt, M, N) → A__X(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U21(tt, M, N)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(U22(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__U12(tt, M, N) → MARK(M)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U21(tt, M, N) → a__U22(tt, M, N)
a__U22(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
a__x(N, 0) → 0
a__x(N, s(M)) → a__U21(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2, X3)) → a__U22(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2, X3) → U22(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
A__U22(tt, M, N) → MARK(N)
A__U22(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(s(X)) → MARK(X)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → MARK(X1)
A__U11(tt, M, N) → A__U12(tt, M, N)
A__U22(tt, M, N) → MARK(M)
A__PLUS(N, 0) → MARK(N)
A__U12(tt, M, N) → MARK(N)
MARK(U22(X1, X2, X3)) → A__U22(mark(X1), X2, X3)
A__U21(tt, M, N) → A__U22(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
A__U22(tt, M, N) → A__X(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U21(tt, M, N)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(U22(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__U12(tt, M, N) → MARK(M)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U21(tt, M, N) → a__U22(tt, M, N)
a__U22(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
a__x(N, 0) → 0
a__x(N, s(M)) → a__U21(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2, X3)) → a__U22(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2, X3) → U22(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
A__U22(tt, M, N) → MARK(N)
A__U22(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(s(X)) → MARK(X)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → MARK(X1)
A__U22(tt, M, N) → MARK(M)
A__PLUS(N, 0) → MARK(N)
A__U12(tt, M, N) → MARK(N)
MARK(U22(X1, X2, X3)) → A__U22(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
A__U22(tt, M, N) → A__X(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U21(tt, M, N)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(U22(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__U12(tt, M, N) → MARK(M)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
The remaining pairs can at least be oriented weakly.

A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U11(tt, M, N) → A__U12(tt, M, N)
A__U21(tt, M, N) → A__U22(tt, M, N)
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
A__U22(x1, x2, x3)  =  A__U22(x1, x2, x3)
tt  =  tt
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
a__x(x1, x2)  =  a__x(x1, x2)
mark(x1)  =  x1
s(x1)  =  s(x1)
A__U12(x1, x2, x3)  =  A__U12(x2, x3)
A__U11(x1, x2, x3)  =  A__U11(x2, x3)
plus(x1, x2)  =  plus(x1, x2)
x(x1, x2)  =  x(x1, x2)
0  =  0
U22(x1, x2, x3)  =  U22(x1, x2, x3)
A__U21(x1, x2, x3)  =  A__U21(x1, x2, x3)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
A__X(x1, x2)  =  A__X(x1, x2)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U12(x1, x2, x3)  =  a__U12(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U21(x1, x2, x3)  =  a__U21(x1, x2, x3)
a__U22(x1, x2, x3)  =  a__U22(x1, x2, x3)

Recursive path order with status [2].
Quasi-Precedence:
[AU223, ax2, x2, U223, AU213, AX2, U213, aU213, aU223] > [MARK1, APLUS2, AU122, AU112] > tt
[AU223, ax2, x2, U223, AU213, AX2, U213, aU213, aU223] > [U123, plus2, U113, aU113, aU123, aplus2] > s1 > tt
[AU223, ax2, x2, U223, AU213, AX2, U213, aU213, aU223] > 0

Status:
plus2: multiset
APLUS2: multiset
AU122: multiset
AU112: multiset
AU213: multiset
U113: multiset
aU213: multiset
x2: multiset
aU123: multiset
0: multiset
AU223: multiset
ax2: multiset
aplus2: multiset
aU223: multiset
MARK1: multiset
tt: multiset
U223: multiset
aU113: multiset
AX2: multiset
s1: multiset
U123: multiset
U213: multiset


The following usable rules [17] were oriented:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
a__U21(tt, M, N) → a__U22(tt, M, N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__x(N, s(M)) → a__U21(tt, M, N)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
a__plus(N, 0) → mark(N)
mark(U22(X1, X2, X3)) → a__U22(mark(X1), X2, X3)
a__U22(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__x(N, 0) → 0
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
mark(tt) → tt
a__U22(X1, X2, X3) → U22(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U21(tt, M, N) → A__U22(tt, M, N)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U21(tt, M, N) → a__U22(tt, M, N)
a__U22(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
a__x(N, 0) → 0
a__x(N, s(M)) → a__U21(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2, X3)) → a__U22(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2, X3) → U22(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.